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A B S T R A C T  

Given F(z),fl(z),f2(z) . . . .  fn(z) defined on a finite point set E, and given 
B - -  the set of generalised polynomials ~,= 1 a~fk(z) - -  the definition of a 
juxtapolynomial is extended in the following manner: for a fixed 2(0 < ). __< 1), 
f(z) ~ B is called a generalized 2-weak juxtapolynomial to F(z) on E if and 
only if there exists no g(z) E B for which g(z) = F(z) whenever f(z) = F(z) 
and Ig(z) -- F(z) ]< ~ If(z) -- F(z)I whenever f(z) ~ F(z). The properties of 
such f(z) are investigated with particular attention given to the real case. 

1. Preliminaries. Throughout  this paper, we assume E is a finite point set in the 

complex domain, consisting of  at least n + 1 points, F ( z ) , f l ( z  ), . . . , f , (z)  are given 

complex functions defined on E ,  and ]E~=I akfk(Z)= 0 on any n points o f  
E ~ - a  1 = a 2 . . . . .  a n = 0, this condition which we denote by F ,  is obviously 
fulfilled by the functions f k ( z ) - -Z  "-k k = 1 ,2 , . . . , n .  Let B be the class of  all 

functions of  the form X~=la~fk(z) where a l ,a2 , . . . , a  n are constants. For  any 
fixed 4, 0 < X < 1, and any set E '  _ E ,  we define the following classes of  func- 

tions: 

f ( z )  e J I (X,E ' )  , ~  f ( z )  e B and there is no g(z) e B which for every z ¢ E '  

satisfies the inequality I g(z) - F(z){ ~ X [f(z) - F(z) (the symbol ~ means 

g( z )=F(z )  when f ( z ) = F ( z )  and I g ( z ) - f ( z )  I < x f ( z ) - F ( z )  I w h e n f ( z ) # F ( z ) ) .  
f ( z )  e J2(X, E ' )  ~ .  f ( z )  e B and there is no g(z) e B which for every z e E '  

satisfies the inequality I g ( z ) -  F(z)] < X ] f ( z ) -  f(z)].  J I (X,E ' )  [Jx(X,E')3 is 
called the class of  generalised X-weak [k-strong] juxtapolynomials to F(z) on E ' .  

Let Ja(X,E')  = JI (X,E ' )  - J2(X,E') .  

2. When fk(z)=_z "-k k = 1,2, . . . ,n ,  J I (1 ,E)  is defined by T. S. Motzkin and 
J. L. Walsh as the class o f jux tapo lynomia l s  of degree n - 1 over E ,  namely 

"neares t "  polynomials to F(z) on E - -  and if in addition F ( z ) - - z ' :  
{z ~ - f ( z ) ;  f ( z ) ~  Jl(1,E)} is known as the class of  infrapolynomials of  degree 
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n over E. The importance of  the class JI(1,E) is in the fact that only for such 
functions f (z) ,  a minimum deviation of  a monotone norm is obtained: 
M = M(f(z),  F(z), E) is called a monotone norm if M is a positive function de- 
fined for f(z)E B, which decreases when f(z) is replaced by g(z)~ B for which 
l g (z) -  F(z)[ ~ I f (z) -  F(z) I on E. Two well known examples of  monotone 
norms are: 

Tchebycheff norm: M = max {[f(z) - F(z) l; z ~ E} 
Least pth power norm: M =  ~,~ee l f ( z ) -  F(z)[P where p > 0 .  
3. The basis of this work are papers [1], [2] by the late Prof. M. Fekete. By 

similar methods a generalization of  his results is obtained, giving in the end the 
structure of  a function f(z) in Ja(1, E) without the restriction f(z) ~ F(z) through- 
out E.  We shall also see (Theorems 1,4), that if F(z) C B then 
B=J2(1,E) Ua<IJ3(2,E ), which is a union of  disjoint sets; also if 
f(z) ~ Jk(2, E) (k = 1, 2, or 3), then there exists a set E '  _= E of  2n + 1 points at 
most (and when F(z), fj(z) (1 < j < n), f(z) are real E '  contains n + 1 points 
exactly) such that f(z) ~ Jk(2, E'). When F(z), fj(z) (1 < j < n), and f(z)  ~ B are 
real we find a representation for f(z) in Jk(2, E) (k = 2, 3). Finally, some topo- 
logical properties (connectedness, compactness) of  Jk(2, E) (k = 1, 2) are discussed 
for the real case. 

Some of the results are easily extended to the case where E is an infinite com- 
pact set, and F(z), f~(z) (1 < j  < n) are continuous on E.  Furthermore, E is 
taken in the complex domain merely for convenience, and all the results con- 
cerning B are in no way altered if E is assumed to be any abstract finite point set. 

LE~IA 1. J3(1,E) = ~ .  

Proof. From the definitions J2(1,E) _~ JI(1,E) .  B # J~(1,E), because due 
to condition F we may construct fo(z)~ B distinct from zero on E,  and 
cfo(z) ¢ Jl(1, E) for sutficiently large constants c. Then if f(z)  e B - J2(1, EO, 
there exists (f(z) ~)g(z) ~ B such that [ g(z) - F(z)[ < If(z) - F(z)[ on E.  Let 
h(z) e B be any function which assumes the values g ( z ) -  F(z) on Eo = {z e E; 
f(z) = g(z)}; such h(z) exist due to condition F and the fact that Eo contains 
less than n points (otherwise g(z)- f (z) ! ) .  Let g~(z)-½g(z)+ ½f (z ) -  ,h(z) 
where 0 < 8 < 1 will be determined later. For any z 0 e E we have one of  the 
following cases: 

(i) z o n e  o. Then clearly [g , (Zo)-  F(zo)[ ~ I f ( z o ) -  F(zo)l. 
(ii) I g(zo) - F(zo) l < If(zo) - F(zo) I • Then 

] ½g(zo) + ½f(zo) - F(zo) ] = < ½]g(Zo) - F(zo)l + ½ ]f(zo) - F(zo)] < ] f (zo) -F(zo l ,  

and since E finite, there exists ,1 (0 < ,1 < 1) such that for every 0 < e < '1 and 
every Zo as above I g,(Zo) - F(zo)[ < If(zo) - F(zo)l. 
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(iii) Zo ~ Eo and ]g(zo) - F(zo) l = If(zo) - F(zo) I • Then 

1½g(zo) + ½S(Zo)- F(zo) l < ½I g(zo)- r(.o)I + ½ lf(zo) - r( :o)I  = IS(zo) - e (zo)  I, 

and here too there is 82 (0<82 <81) such that for any z 0 as above 

I g,,(Zo)- e(z0)l < IS(z0)- F(zo)l. 
We proved that in all cases I g,,(z) - e(z) I ,~ If(z) - e(=) I , that i s f  (z)~ J~(1, E). 

4. THEOREM 1. I f  F(z)~B then B=J2(1 ,E )U~<~J3 (2 ,E ) .  

Proof. Let f ( z ) e B - J l ( 1 , E )  and let 2 '=Sup{2; f ( z )eJ l (2 ,E)} ,  then 
4 ' >  0, since 4 ' =  0 implies that for every 2 < 1, there is ga(z)eB such that 
Ig~(z)- e(z)l ~ 2If(z)-F(=) I on E; taking a sequence 2,,--,0, we obtain a 
sequence ga.,(z) --) F(z) on E,  a suitable subsequence g~,,, (z) will converge 
to a limit function g ( z ) e B ;  this is due to condition F ,  since if 
M = Max {If(z) - F(~) I + l e(=)l; z ~ E), the set gx.,(z) is uniformly bounded 
by M on E,  and if a ( ' )=  ~,,lt" (,,),,2., (') , --., a, (')) is the coefficients' vector of gain(z) 
then due to condition F for any set of distinct points{zl,z2, ..., z,} ___ E,  the 
vectors f ( z i )=  (fl(zi),f2(z~), ...,f,(zi)) i=1 ,  ..., n form a basis to the n-dimen- 
sional complex vector space, and as the scalar product g~,,(z~)= (at"),f(zi)) is 
uniformly bounded, it follows that the set {a (-) } is uniformly bounded 
and therefore has a subsequence {a ("~')} which converges to a limit point 
a '= (a~,a'2,...,a',), for which 

F(z) = lim g~,,, (z) = g(z) (=- ~ a;fk(z)) for every z e E,  
i ' -*~ k = l  

a contradiction! 
f ( z )eJ l (2 ' ,E) ,  since assuming otherwise, there exists g(z)eB with 

]g (z ) -  F(z)l ~: 4' I f ( z ) -  t ( : )  I on E, E being finite, the inequality holds for 
some 2, 0 < 2 < 2 ' ,  contrary to the definition of 4 ' .  Assume f (z)eJ2(2' ,E) ,  
then there is (contrary to the definition of 2'!) e > 0, 8 + 4' < 1, such that 
f(z)  E J1(2' + 8,E), because otherwise for every e > 0, e + 4' < 1, exists 
g,(z) e B with [ g,(z) - F(z) l < (4' + 8)If(z) - F(z)[ on E,  and similarly as above 
taking a sequence 8m ~ 0 with g,,,(z) converging to a limit function g(z) e B on E,  
we obtain the inequality ] g ( z ) -  F(z)[ < 4' I f ( z ) -  F(:)[ on 6 ,  impossible by 
our assumption. Hence f ( z )~  Jz(2' ,E).  Note that the classes which compose B 
are all distinct. 

We see now that f ( z ) e  Jz(2,E)¢~. 2 < 4 ' .  We shall show later how 4' may 
be calculated under certain conditions (Theorem 4). Lemmas 2, 3 are required 
in the proofs of some later results. 

5. LEMMA 2. Let f ( z ) e B  and 0 < 2 <  1. f ( z ) e J l ( 2 , E ) ~  for no h(z)~lB 
the inequality 
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(D IF(z) - f (z)  + h(z)I ~: A I F(z) - f(z) - h(z) l 

holds throughout E. 

Proof. If 2 = 1, and if for some g(z) ~ B, 

(2) IF(z)-g(z)l ~ IF(~)-f(z)l 
throughout E, then let h(z)-f(z)- g(z). If, for Zo e E, f(zo)= F(zo) then 
g(zo) = F(zo), hence h(zo)--0 which implies (1) for z o. If f(zo) ~ F(zo), 
then 

IF(go) - f (zo)-h(zo)!  = lF(zo)-2Y(Zo) + g(zo)[ = IF(zo)-S(Zo)l t 2 -  (F ( z ° ) -  g(zo)~ ] 
W(Zo)- / (Zo)}  

> IF(g°) -f(z°)] ( 2 - I F(zo) - g('o) IF(zo)-:(zo)l IF(zo)- g(zo)[ 

= IF(go) - f ( zo)  + h(zo) l, 
thus (1) holds for every z e E. 

/ K [ ~  ~ \ 

Conversely,(1) (with,~ = 1)impliesthatwhenF(zo)~f(zo) , Re (' f(J~-~---°)F(zo) ' ) . _ v . -  >0.  

Let 
a__sup{I  h ( z ) . 1 2 / 2  ( h ( z ) )  

:(z) --F(z) Re,:(z) - r(z) ;~E,:(z)~ r(z),, 

h(z) then inequality (2) easily follows. When, for Zo ~ E, and put g(z) -f(z) I + a' 

F(zo) =f(zo), then h(zo)= 0, hence g(zo)= F(zo), and again (2) is satisfied. 
i 

If 2 < I, let h(z)- 1.d1__~(f(z )- g(z)) be the relation between g(z)EB 

and h(z) ~ B. Obviously, 

]r(~o)-g(zo)] ~: ~lF(zo)-f(Zo)] ,~ (I) holds for go. 

Note that I.emma 2 holds if 0 < 2 < 1 and we replace above "JI(2,E)" with 
"J2(~,E)", and replace "<" with "_-<". 

L~MA 3. Le t f ( z )~B,  E o = {zeE; f ( z )=F(z )} .  For every E' c_E-Eo ,  
define the set R(E') in the Euclidean space 82": 

R(E,)ffi~(rl,sl, r2,s2,...,r~,s,);r~=Re [ ~(z). ] [ ft(z) ] L f(z) - F(z) l '  s~ = I m  If(z) - F(z) J 

l <_i<_n, z~E'}. 

For any a=(al ,  b l , . . . ,a , ,b , )~  2" let n(a,1)={x¢82~; (x,a)>O}, and for 
0<#<I let 
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n(a,#) = {x=  (xl ,Yl , . . . ,x . ,y . )e82";  ~ (x k + iy~)(a~--ibk)-- 11 < #}. 
k = l  I 

Given 0 < 2 ~_ 1, f (z)  e JI(2,E) ~ for every a = (al, bl, "", a., b.) e 82" which 
satisfies ~,~=~(ak -- ibk)fk(z) = 0 on Eo,R(E - Eo) ~ ~(a,2). 

P r o o f .  ~= : Suppose f ( z )¢  J~(2, E), by Lemma 2 there exists 

h(z) -- ~ (a t - ibi) fk(z)  

which satisfies (1) on E ,  let a = (as, bl, "", a,, bs). I f  2 = 1, (1) means: h(z) = 0 

[ h ),1 o n E o ,  and Re i f ( z ) -F ( z )J  > 0  on E - E o  that is R ( E - E o )  cn(a ,1) .  

If  2 < 1, (1) means: h(z) = 0  on Eo, and x/1 - 22 f (z)  - F ( z ) -  1 < 

on E -  E o that is R ( E -  Eo)~_ ~(a', 2) where a ' =  ~/=J- 22 a .  
=~: This is proved similarly by working backwards. 

TImOI~M 2. Given 0 < 2 < 1 and f (z )  e B,  suppose E o = {el, c2, '-', ci} = 
= { z e E ;  f ( z )=F(z ) }  where O < l < n .  f ( z ) e J l ( 2 , E ) ~ t h e r e  is a set 
E,+ t ~_ E - E o of  m + l points, n - l ~ m ~_ 2(n - l), such that 

f (z)  e J1 (2, Era+ 1 U Eo). 

Proof. ~ : Obvious. =~: Assuming to the contrary f (z )  ~ J1(2, E2,- 21 + l U Eo) 
for every E2,_2z+l={Zo, Z l , . . . , z2 ,_21}~_E-Eo,  there is by Lemma 3 
a = ( a l , b l , . . . , a , , b , ) e 8  2" such that Y~=l(ak- ibk ) f i ( z )=O on E 0 and 
R(E2s_2,+l) ~_n(a,2). Let x j=(Re f l (c l )  , Imfl(cl), . . . ,Ref,(cl) , Imf,(e/)),  
Yt = (Imfl  (cj) , -Refl(cj) ,  ..., Imf , ( c j ) , -  Ref,(cj)),j = 1,2, ..., l, and for any b e 82" 
let H(b) = { x; (b, x) = 0}. Since the vectors x 2, Y 1 , ' " ,xt ,  Yz are linearly in dependent, 
H = N J = I H ( x j ) n  H(yj) is 2 n -  21 dimensional. Let x ( z ) e R ( E -  Eo) be the 
point associated with z e E - Eo. By our assumption a e HI"1 ~ o  2~ n(x(zi),2). 
Using the well known Helly's theorem on the intersection of  convex sets in 
82"-2~ (the sets n(x(z),2) are convex), there exists a'=(a~,b~, . . . ,a ' ,b '~) 
in Hf'), ,E-Eon(X(Z),2), that is ~,~.-_l(a~-ib~)f~(z)=O on Eo and 
R ( E -  Eo)~ n(a',2), meaning by Lemma 3 f (z)~J~(2,E) - -  a contradiction! 
We proved the existence of Em+~ with m ~ 2 (n - / ) ,  deafly m > n - l ,  since 
otherwise, by condition r ,  there exists g(z )eB equal to F(z) on Em+l UEo.  

~ .  al)  Obviously if  Eo has n points at least, then f(z)eJl(2,E'o) 
where E~( __. Eo) contains n or more points. 

bl) A similar theorem holds for J2(2,E). 
el) I f  F(z), f ( z ) ,  fk(z) (1 ~ k < n) are real we obtain m = n - l (since in the 

proof R ( E -  Eo) can be embedded in 8~). This is also true for J2(2,E). 
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6. The following theorem is established in [2] for the case f ~ ( z ) -  z " - t  
(1 <- k < n) and Eo = ~f .  

Trmom~M 3. Suppose f ( z ) ¢ B ,  Eo = {c~,...,c~} = { z ¢ E ;  f ( z ) = F ( z ) }  and 
O < - l < n .  

(i) f ( z )  ~ Jl(1, E) :*. there exist - -  a set Era+ 1 = {Zo,'", Zm} ~-- E -- Eo where 
n - 1 < m < 2(n - l), constants 2~ > 0 (0 < i < m) and wj (1 < j  < l), such that 

m ! 
(3) ]~ 2if~(zi)(F(zi)--f(z~)) + ~, wJk(c~) = 0 

i=o j = t  

for every 1 < !¢ < n. 
(ii) I f  (3) holds for some such Era+l, 2~, wj, then f (z )¢Jl (1 ,Em+ 1 UEo) .  

Proof. We retain the notations of  Theorem 2. (i) By Theorem 2, 
f ( z )~J l (1 ,Em+t  UEo) for some such Era+ 1. By Lemma 3, a ~ H ~ R ( E m + t )  

~(a, 1), that is CR(Em+I)t~ H(a) # ~ ,  meaning CR(Em+ 1 ) n H J  # ~ (where 
CR(Em+I) denotes the convex hull of  R(Em+I), and H ± the space orthogonal 
to H) .  Therefore there exist constants Z t ~ 0  X t % o ~ q = l ,  real constants 
g~,]~j (1 ~ j  _-</) such that ~'=o/Zzx(z3 = Y~=t ~jxj + ~jy j .  Putting wj =Ot j - - j~ j ,  
As = #~]f(zt) _ F(z~)1-2, we obtain (3). At least n - l constants 2z are positive, 
since (3) with m < n -  l gives (due to condition F) 2~ = 0 and w~ = 0 which 

= 2 contradicts ~ = o  z> 0. 
(ii) Conversely, (3) means C R ( E = + O N H ± #  ~ ,  that is 

a ~ H  =~ R(E,,,+I) ¢; n(a, 1), 

and by Lemma 3 f (z )  ~ J t  (1,Em+l UEo) .  
REMARK. Theorem 3 with fk(z) = z ~-k , F(z) = z" and E o = ~ supplies us 

with the structure of  an infrapolynomial [1]: let p(z) = zn+ a l z ~ - l +  .-. + a~ # 0 
on E.  p(z) is an infrapolynomial on E¢~ there exists Em+l = {zo, zl ,- . . ,zm} __G E 
with n < m < 2 n  for which p(z) is an infrapolynomial .,~ there exist 

21 > 0 i = 0 ,1 , . - . ,m ~i=_-oXi = 1 such that ~i~o2~I-I~=o:~,~ (z - zj) is di- 
visible by p(z). 

7. We shall find in this section the structure of  f ( z ) ~ J a ( 2 , E )  when 
F(z),A(z),f(z) are real and A < 1. 

Given 0 < 2 ~ 1, an integer n, and a set E,  denote by I i (2 ,n ,E)  [I2(2, n, E)] 
the set of  all polynomials p(z) -- z n + alz  "-1 + ... + a, with the property - -  for 

no polynomial q(z) = z" + ... the inequality I q(z) l 2lp(z) l [I q(z) l =< 21p(z)l] 
holds throughout E.  Let Ia(2, n, E) = 11(2, n, E) - 12(4, n, E). 

REMARKS. a2) It is shown in [3] that when E is compact I3(1, n , E ) =  IZ 
(compare with Lemma 1), also by similar methods to Theorem 1 
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I 2 ( 1 , n , E ) U ~ < I I 3 ( 2 , n , E  ) consists of  every polynomial of  the form 
z n + a l z  n-I + "" + an (for finite E).  

t(z) 
b2) Given zo ~ E, t(z) ~ Ik(2, n, E) and t(Zo) = 0 ~ e Ik(2, n-- 1 , E -  {Zo}). 

Z - -  Z 0 

c2) Presently we shall need the following result (see [4]): If  F(z), 
fk(Z) (1 < /C< n) are defined on E =  {Zo, Z l , ' . ' , zn} ,  and if condition F 
holds and F(z) ~ B ,  let f ( ° ( z )  e B be the function for which F(z ) - fC° ( z )  vanishes 
on E -  {zt}, i = 0,1,..., n. Given any f ( z )  E B there is a polynomial p(z) = z ~ + ... 
(or alternately, given any p(z) = z ~ + ... there is f ( z )  e B) such that 

(4) p(zi) (z i - zj) = (F(z~) - f ( z t ) ) / ( F ( z i )  - f ( ° ( z t ) ) ,  0 <_ i < n. 
j # !  

d2) When f ( z )  and p(z) are related by (4) on such a set E,  

y(z )  ~ J~(a,E) o p(z) ~ Ik(,~, n, P,). 

I1(1, n,E) = {~o  ~ 

so it follows from (4) that 

j rI 1 
j = 0  = 

J r ( l ,  E) = {f(z) ~ B; 2, = (F(z,) - f (z , ) ) / (F(z , )  - f(0(z,)), 2, _~ 0, ~ 2, = 1}. 
l f f iO 

e2) When F(z) , fk(z)  (1 </c  < n) are real over E = {Zo, z l , ' " ,  zm} (m ~ n), 
clearly JI(1,E)  consists of  real functions only. By c I f ( z ) ¢ J l ( 1 , E n + l ) f o r  some 
gn+l ={z~,...,z'n} __qE, and d2 yields a simpler representation than that in 
Theorem 3. 

From now on we limit ourselves to the real case only, that is, g is a finite 
point set in the real line, F(x) ,  f~(x) (1 < k < n) are real on E and we restrict B 
to real functions only. This is necessary as the following results appear to have 
no simple equivalent generalizations for the complex case. 

Ti-mOrd~M 4. Let F(x)  ~ B , and suppose f ( x )  e B is equal to F(x)  on n points 
at most. For any g~+t = {xo, x t , . . . , x~}  ~ E ,  let 

2(En+t) -- ~=o F ( x i ) - f ( ° ( x i )  

where f ( ° ( x )  is defined for  En+ ~ as in c2 (define 2(En+l) = 0 i f  F(xi. ) =f(~')(x~,) 
for  some (i ' ) .  Let  2' = sup{~(En+I);En+ t - E}, then 0 < 2' < 1 and 
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(i) 2' = 1 o f(x)  ~ JI(1,E), 
(ii) 2' < 1 o f(x)  ~ J3(2',E). 

Proof. Assume 2' > 1 and suppose 2' = 2(E'+1) where E',+I = {X'o,X'x,'",x'}. 
F(x)~  ~.,7=lajfl(x) on E '+I ,  since otherwise 2(E'~+1)=0. Let p(x)---xe+ 
box, - 1 +.. .  + b~ be related tof(x) by (4) for the set E~+ 1. Let to(x) - IIT=o(X - x[) 
then 

-- to'(x'~) F(x'~) - f(')(x|) = 2(E• + 1"---"-"~ | = 0  i = 0  i=O 

which contradicts 2(E'+1) > 1. 2' > 0, since 2' = O=~F(x)~Bt 
(i) =~: Let 2 ' = 2 ( E ' + 1 ) = 1 ,  using (4) and (5) we have p(x;)/to'(x't)~_O, 

and from d2 f(x)~Jx(1, E'+I) c_ J1(1, E). 
(i) ~=: By cl there exists E~+ 1 such that f (x)  ~ Jx(1, E'+ 1), using (4) and d2, 

(5) follows with equality everywhere, giving 2(E'+1)= 1. 
(ii) =~ : Suppose 2' = 2(E'+ 1) andf(x)  ~ J1(2', E'+ i), then there exists g(x)~ B 

such that I g(x;) - F(x;) l ~ 2' If(x;) - t(x;) I i = 0,1,.--, n. Let (4) relate 
r(x) =-x '+ ... and g(x) for E '+I ,  then 

1= r(,:,) I 
to'(xO < ~ = - to'(x9 i = 0  i = 0  

N f ! 

,=o F-~- - f ( -~(~)  < 2(E~+1) ,=o F(xl)-f(O(x't) 

this contradiction implies f(x)  ~ Jl(2', E'+ 1) _c J1(2', E). 
For any E,+l={xo, . . . ,x ,} ,  f(x)~J2(A(E~+l),E~+l). This is obvious if 

A(E,+ 1) = 0. If 2(E,+ 1) > 0, let (4) relate p(x) - x n +.. .  andf(x) on E,+ 1, define 

r ( x ) -  ~ 2(E.+,)IP~X') ] to(x) where t o (x ) -  f i  ( x - x , )  
l = 0  ~ X ~ X l ~ / = 0  

then I r(x,) I = 2(E, + 1) I P(x~)l, meaning f(x)  ~ J2(2(E~ + 1), En + 1) (~  J2(2', E,+ 1)). 
Let 

c(x) = {(al, 8"; a,f,(x)- r(x) I r l i ( x ) -  r(x)l}, 
i = l  

_n 
we have [7  C(x~)~ ~ for every En+l ~ E, and by Helly's theorem (the sets 

l = O  

C(x) are convex) N ~eE C(x) ~ ~ , so f(x)  ~ J2(2', E). Therefore f(x)  ~ Jz(2', E). 
( i i )  ~ : JI(1,E) = J2(1,E), therefore 2' < 1. 

COROLLARY 1. Suppose f(x)  = F(x) only on Ek = {Xo, Xl, "",x~-l} where 
0 < k < n ,  let 0 < 2 < 1 .  

(i) f (x )eJa(2 ,E): ,  there exist: E,+x = E~ U {xk, x~+l,...,x,}, constants 
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otj,pj ~ 0 (j = k , k  + 1, ...,n) with ~,]=kO~j = ~'~=kflj = 1 and ~Jfli = 0 such 
that 

(6) f (x j )  - F(xj) = (1 + 2)~j - (1 - 2)rj(f(j)(Xj)R. -- F(Xj)) (k < j  < n) 
24 = " 

(ii) I f  (6) is satisfied for such En+1, ~j, flj then f ( x ) ~  Ja(2,En+l).  

Proof.  (i) The existence of such En+ 1 for which f ( x ) e  J3(2, En+ 1) is assured 

by c~, and by Theorem 4: ; l = -  -- ~ ] ~ I F ( x ' ) - f ( x ' )  ] I - t  
i=o F(xi) - ftO(x~) . Define 

L - " . J  

~1 = 1 + 2 F(xj) -f(~)(x~) when this ratio is positive, and when it is negative 

22 [ F ( x j ) - f ( x j )  ] (take e j = 0  [ ~ j = 0 ]  when p j # 0  define f l j --  1 - 2 F(x j ) - f ( J ) (x j )  

0]), representation (6) then follows. 
Calculating 2(En+~) of Theorem 4 from (6) we have 2(E.+1) = 2 < 1, 

• [~j # 

(ii) 
the rest follows from Theorem 4(ii). 

8. We aim to prove here a supplement to Corollary 1: 

COROLLARY 2. With the assumptions of Corollary 1, 
(i) f ( x )~J2(2 ,E)  ~ there exist: E~+I=Ek U{XR,Xk+x,...,X~}, 

2~j > O (k < i # j < n) ~,2q = l such that 
constants 

(7) f (x j )  - F(xj) = ~, (1 + 2)2ij - (1 - 2)2ji (f(J)(xj) -- F(Xj)) (k < j ~ n) 
22 i=k 

(ii) I f  (7) is satisfied for  such En+~,2ij, then f ( x )  ~ Jz(2 ,E,+l) .  

The proof  of Corollary 2 depends on the following two lemmas of which the 
first is obvious: 

LEMMA 4. I f  C ~_ ~ is a compact convex set, let n(a, 2) = (x ~ e";] (x, a ) -  1 1 < 2} 
where 0 < 2 < 1 and a e an. C ~ n(a,2) for  every a ~ ~ ¢~ the orthogonal pro- 
jection of C on any line I through 0 is a closed interval [(x(l),y(1)] with the pro- 

d(y(/), O) 1 + 2 (d denotes the Euclidean perty: either 0 ~ [x(l),y(l)] or d(x(1), O) > 1----2-22 

metric function). 

LEMMA 5. Let A = { x o ,  X~,...,x~} c_~ n be an affine independent set. For 
(1 + 2)xj - (1 - 2)x~ 

0 < 2 < 1 and ~(a,2) as above, define xtj = 22 (O<i#j<=n), 

let F =  {xl~;O< i # j  <n}  and C(F) its convex hull. Then, O~intC(F)  
A ~ n(a, 2) for  every a ~ e n. 
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Proof. For any G _~ e" denote by C(G) its convex hull. 
STATEMENT a: Let F '  = (xo;0  < i ~ j  < n}, the relative interior of C(F') is 

contained in int C(F). This is due to X,o and Xo, being strictly separated by n - -  
the plane containing F ' - - w h e n c e  relint C(F') ~_ int C(F' U {X,o,Xo,}) - int C(F). 
Moreover A _ intC(F).  

STATEMENT b: Let 7c1,~ 2 be parallel distinct planes supporting C(A)at  x.i,x t 
respectively. Let 7r 3 support C(F) so that rh separates n3 and ~2, then x u ~ ns. 
This is easily verified for n < 3. Suppose n > 3, let xu ~ C(F) n n3 and assume 
that A' = {Xo, x~,..., Xn- 1} contains x ,  x j ,  Xk, X~, let the plane n contain A' ,  and 
let F '  = {x~j;0 < i ~ j  < n}, n ' =  lr, n n  r = 1,2,3. Reducing the problem to 
the (n - 1) dimensional "space"  n,  the proof is carried out by induction. 

STATEMENT C: With the notations of statement b,  

dora, n2) d(xtj , x~) 1 + 2 
d(na, nl) d(x+j, x j) 1 2" 

<=: Assume O~intC(F) .  Take n, ( r =  1,2,3) as in statement b so that n3 
separates O from C(F) and C(F) ~ rc 3 is an n - 1 dimensional face of C(F). Pass 
a line I orthogonal to % through O, let l t3 ~, = x' (r = 1,2,3), then [x~,x~] 
is the orthogonal projection of C(A) on l, and by statement c 

d(na, re2) 1 + 2 d(x'3, x'2) d(O, x'2) 
d(na, ~1) 1 - 2 d(x' a, x '~)  d(O,x'~) 

which contradicts Lemma 4. 
~ :  Let l be any line through O, let n~ (r = 1,2,3) be as in statement b and 

orthogonal to l, let x" = I n  n, (r = 1,2,3) and suppose O~(x'~,x'3), then 
d(O, x'2) d(x'a, x'2) . 1 + 2 
d(O, x'~) > d(x'3,x' ~) (by c ) =  i----- 2' and according to Lemma 4, 

a ~ ~" =~ n(a, 4) ~ C(A). 

Proof of Corollary 2. (ii) 

2(E.+l)  t=o 

I F(x+)- f (x , )  
F(xi) _ f(O(xi) I = 

1=k i=k j=k t=k 24 2 ' 

Theorem 4 gives f (x )  ~ J 1 (2(E, + 0,  E, + 1) -~ J2(2, E, + 1). 
(i) By Remark cl f (x )eJ2(2 ,E ,+O for a suitable E,+I ---Ek. Let (4) relate 

r " t k - l t X -  X~), by d2 p,(x) = x"+ "" and f (x )  for E,+I,  let p,_k(X)=p,(x) /  llj=O~ 
and b2 P,-k(X)eI2(2,n-- k,E,+ 1 --Ek). Let X~=(p,_k(X,))-I(XT-k-1,.",X, 1) ~ e "-k 
i = k,k + 1, . .- ,n,  and let tr = {Xk, X~+~,"',X,}. As in Lemma 3: 
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pn_h(x) e I2(;~,n -- k, En+ 1 - E k ) o e  , x(a,2) = { x e s " - t ; l ( a , x )  -- 1 1 <= ;~} 

for every a e 8 "-~. 
is ( n -  k)-dimensional, for assume it is not so, then the linear hull of a, L(o 

contains the origin; since otherwise the orthogonal projection of L(a) on a 
line through the origin and orthogonal to L(a) is a single point; and this by Lem- 
ma 4, contradicts the result: ~ r ,  7r(a,~) for every a e ~,-k. Therefore, there 
exist n - r (__< n - k) points in ~, suppose x,+x,x,+2, "", x , ,  and real constants 
a,+l,a,+2,.. . ,a,,  not all zero, such that ~=r+taix i  = 0, but this equation has 
only one solution at+ t = a,+2 . . . . .  a~ -- 0, which is a contradiction. 

Hence by Lemma 5 0  e intC(F) (we substitute o" for A and 8.-k for e" 
in the lemma), so if 22x u = (1 + ;t)xj - (1 - ~)x t (k < i ~ j =< n) then there 
are 2u as above for which ~E ~uXu = O; consideration of the coordinates and 
use of the Lagrange interpolation polynomial gives 

( 2);tu ~-)~ (1 ) " 
= y.  (1 + - - H ( x -  x,). 

j = k  t = k  i = k  

(7) follows immediately. 

9. For every f ( x ) - ~ , ~ f a a i f ( x ) e B  we associate here the point 
( a l , a 2 ,  . . . , a , )  e e", then 

THEOREM 5. Under the preliminary conditions of  Theorem 4, JI(2,E) is 
compact and connected. 

Proof.  By cl JI (~ ,E)= uJ l (X ,  En+l), it is sufficient therefore to establish 
compactness of J I (2 ,E,+l) :  E,+I = {Xo, .-.,x,}. According to Theorem 4, 

I r(x,)-f(x,) ] <1 
,=o F ( - ~ )  ---f(O-~-~) = ~ ~ f (x )eJ~(2 ,E.+~) ,  

and compactness is now obvious, 
Let f ( x )  e Jx(2, E.+ ~) and consider the nontrivial ease: F(x) ~ Z"~ = ~ a~f~(x) 

on E.+~. Let g.(x) = o~f(x) + (1 - ~)f(°)(x) (0 < a < 1), then 

I I i=o ~ - - f ~  < 1 - ~z + oc ,=o F(x,) - f(O(x,) 2 < "~ 

that is g,,(x)edx(2,E,,+:). 
We finish by showing that J~(1,E) is connected. Let gx(x), g2(x)eJ~(1,E),  

there are .~,~°)+ ~ = {X(ol),..., x(O} (i = 1,2) such that g,(x) e d~(1, E~l)+ ~). Suppose 
~'(~) c~E~2)~={x~,x2,.. . ,x,,} let g ( x ) e B  be the function for which now -~,+ 1 

~(1) )~(2) then g(x)eJi(1,E(~° 0 (i 1,2), and F(x) -- g(x) vanishes on ..,. + ~ ~ .~. + ~, = 
since Jt(1,E.(~x) is convex (deduced from d2), the proof is established for this 
ease. In general, construct sets .~.+~'°) -.-~,.2,~" . . . ,F,  = ~.+x~'(') such that F~ (1 _-<i<= r) 
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has n + i points exactly, and Fi n F~+ 1 has n points exactly, we may now connect 

g1(x), g2(x) through the intermediate sets Ft. 
REMARKS. Also it may be verified that J~(2, E) (0 < A < I) is open, connected, 

and its closure is JI(A,E). 
In [3] it is shown that l~(1,n,E) is convex if and only if n = 0 or n = 1 or E 

has n + I points. This is not true in the general case as shown by the following 

counter example: 

E = {x t ,x2 ,xa ,x+}  (xl+l > xi), F(xl)  = F(x2) ---- F(xa) = 0 and F(x+,) = 1, 

and f l (x )  - x ,  f2(x) - 1.  We obtain from Remark d2: 

4 

J~(I,E) = ,=V~ JI(I,E - {x,}) = JI(I,E - {x2}) 

which is convex.  
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