PROPERTIES OF GENERALISED JUXTAPOLYNOMIALS

BY
YEHORAM GORDON*

ABSTRACT

Given F(2), f1(2), f2(2), . ., f,(2) defined on a finite point set E, and given
B —the set of generalised polynomials I}~y a.fi(z) — the definition of a
Jjuxtapolynomial is extended in the following manner: for a fixed (0 < A< 1),
f(2) € B is called a generalized A-weak juxtapolynomial to F(z) on E if and
only if there exists no g(z) € B for which g(z) = F(z) whenever f(2) = F(z)
and |g(z) — F(2)|< A|f(z) — F(z)| whenever f(z) # F(z). The properties of
such f(z) are investigated with particular attention given to the real case.

1. Preliminaries. Throughout this paper, we assume E is a finite point set in the
complex domain, consisting of at least n+1 points, F(2), f;(2), -+, f,(2) are given
complex functions defined on E, and X;_;q,fi(z)=0 on any n points of
E<>a,=a,=--=a,=0, this condition which we denote by I', is obviously
fulfilled by the functions fi(z)=z""* k=1,2,---,n. Let B be the class of all
functions of the form X/_,a,f,(z) where a,,4a,,--+,a, are constants. For any
fixed 1, 0 <A< 1, and any set E’' < E, we define the following classes of func-
tions:

f(2)eJ(L,E") < f(z)e B and there is no g(z)e B which for every ze E’
satisfies the inequality |g(z) - F(z)( -y [ f(@) - F(z)| (the symbol < means
g(z)=F(z) when f(z)=F(z) and I g(z)—F(z)l < A| f(z)—F(z)| when f(z)# F(2)) .

f(@)eJ(L,E") < f(z)eB and there is no g(z)e B which for every ze E’
satisfies the inequality |g(z) — F(z)| £ A|f(2) — F(2)|. J:(4,E") [J.(4,E"] is
called the class of generalised A-weak [A-strong] juxtapolynomials to F(z) on E’.

Let J3(A,E") = J (AL E)—J,(A,E").

2. When f(2)=z""*k=1,2,.--,n, J,(1, E) is defined by T. S. Motzkin and
J. L. Walsh as the class of juxtapolynomials of degree n — 1 over E, namely —
“‘nearest’”” polynomials to F(z) on E — and if in addition F(z)=z":
{z" - f(2); f(z2) € J(1,E)} is known as the class of infrapolynomials of degree
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n over E. The importance of the class J(1, E) is ir the fact that only for such
functions f(z), a minimum deviation of a monotone norm is obtained:
M = M(f(z),F(z),E) is called a monotone norm if M is a positive function de-
fined for f(z)e B, which decreases when f(z) is replaced by g(z)e B for which
Ig(z) —F(z)l b3 | f(z)—F(z)| on E. Two well known examples of monotone
norms are:

Tchebycheff norm: M = max{|f(z) — F(z)|; z€ E}

Least pth power norm: M= X, . E‘ f(z) - F(z)|” where p> 0.

3. The basis of this work are papers [1], [2] by the late Prof. M. Fekete. By
similar methods a generalization of his results is obtained, giving in the end the
structure of a function f(z) in J,(1, E) without the restriction f(z) # F(z) through-
out E. We shall also see (Theorems 1,4), that if F(z) ¢B then
B=J,(1,E) U,1< 1J3(4, E), which is a union of disjoint sets; also if
f@eJ A E) (k=1,2, or 3), then there exists a set E' < E of 2n + 1 points at
most (and when F(z), fi(z) (1 £j=<n), f(z) are real E’ contains n + 1 points
exactly) such that f(z) e Ji(4, E’). When F(z), f{(z) (1 £j < n), and f(z)e B are
real we find a representation for f(z) in J,(4, E) (k = 2,3). Finally, some topo-
logical properties (connectedness, compactness) of J,(4, E) (k = 1,2) are discussed
for the real case.

Some of the results are easily extended to the case where E is an infinite com-
pact set, and F(z), fi(z) (1 £j < n) are continuous on E. Furthermore, E is
taken in the complex domain merely for convenience, and all the results con-
cerning B are in no way altered if E is assumed to be any abstract finite point set.

Lemma 1. J;(LE)= .

Proof. From the definitions J,(1,E) € J,(1,E). B+ J,(1,E), because due
to condition I we may construct fy(z)e B distinct from zero on E, and
cfo(2) ¢ J.(1,E) for sufficiently large constants ¢. Then if f(z)e B - J,(1,E),
there exists (f(z)#)g(z)€ B such that |g(z) — F(z)| £ |f(z) — F(z)| on E. Let
h(z) € B be any function which assumes the values g(z) — F(z) on E, = {z€E;
f(2) = g(z)}; such h(z) exist due to condition I" and the fact that E, contains
less than n points (otherwise g(z)=f(2)!). Let g,(2)=1g(z) + 1f(2) — eh(2)
where 0 <& <1 will be determined later. For any z,€ E we have one of the
following cases: .

(i) zo€Eo. Then clearly |g(zo) — F(z0)| < |f(z0) — F(20)|-

) |&(zo) ~ F(z0)| < |f(20) — F(z)|. Then

|32(z0) + 4f(20) — F(z0)| = 3] 8(z0) = F(20)| + %|f(20) — F(zo)| < | f(z0) = F(zo),

and since E finite, there exists ¢, (0 < ¢, < 1) such that for every 0 <e<e, and
every z, as above Ig,(zo) - F(Zo)l < | f(zo) — F(zo)l .



1966] PROPERTIES OF GENERALISED JUXTAPOLYNOMIALS 179
(i) zo¢Eo, and |g(zo) — F(z0)| = |f(zo) — F(zo)|. Then
|38(z0) + 3f(z0) — F(z0)| < 3| 8(z0) — F(20)| + 3| f(zo) — F(zo)| = | 1(20) — F(20)|,

and here too there is &, (0<e, <¢;) such that for any z, as above

|gzz(20) - F(Zo)| < |f(zo) — F(z) | .
We proved that in all cases | g,.(2) — F(2)| < |f(2) = F(z)|, thatis f (2)¢ J (1, E).

4. TueoreM 1. If F(z)¢B then B=J,(1,E)| Ji<1J5(4, E).

Proof. Let f(z)eB—J,(1,E) and let A’ =Sup{i;f(z)eJ,(4,E)}, then
A'>0, since ,1’ =0 implies that for every A <1, there is g,(z)e B such that
| 2:(2) — F(2)| > A|f(z) — F(z)| on E; taking a sequence 4,—0, we obtain a
sequence g, (z) > F(z) on E, a suitable subsequence g, . (z) will converge
to a limit function g(z)eB; this is due to condition I', since if
M =Max{|f(z) - F(2)| + | F(2)|; zeE} the set g, (z) is uniformly bounded
by M on E, and if a™= (a{™,a™,---,al™) is the coefficients’ vector of g, (z)
then due to condition T" for any set of d1st1nct points{z,,z,, -+, z,} S E, the
vectors f(z) = (f1(z),f2(z), . f(z) i=1,---,n form a basis to the n-dimen-
sional complex vector space, and as the scalar product g; (z,) = (a™, f(z)) is
uniformly bounded, it follows that the set {a®™} is uniformly bounded
and therefore has a subsequence {a“™?} which converges to a limit point
a’' =(aj, a3, ,a,), for which

F(z) = lim g, (2) = 2(2) (= E a,f(2)) for every z€E,

a contradiction!

f(2)eJ(A,E), since assuming otherwise, there exists g(z)eB with
|g(z) — F(z)| < 2'|f(z) = F(z)| on E, E being finite, the inequality holds for
some A, 0 <A< A, contrary to the definition of A’. Assume f(z)eJ,(1',E),
then there is (contrary to the definition of A'!) ¢>0, e+ A" <1, such that
J(2)eJ (A’ +&,E), because otherwise for every ¢>0, e+ A’ <1, exists
g2) € B with | g(z) — F(z)| £ (" + &)|f(z) — F(z)| on E, and similarly as above
taking a sequence ¢, — 0 with g, (z) converging to a limit function g(z)e Bon E,
we obtain the inequality |g(z) — F(z)| £ 4'|f(2) — F(z)| on E, impossible by
our assumption. Hence f(z) ¢ J,(4’, E}. Note that the classes which compose B
are all distinct.

We see now that f(z)eJ,(4,E) < 1 <A'. We shall show later how 4’ may
be calculated under certain conditions (Theorem 4). Lemmas 2, 3 are required
in the proofs of some later results.

5. LEMMA 2. Let f(z)eBand 0<AZ1. f(z)eJ (4, E) <« for no h(z)elB
the inequality
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« 1| F(z) = f(2) = h(z)|
1+ 1T=72

M | F(2) - £(2) + h(z)| <

holds throughout E.
Proof. If A=1, and if for some g(z) €B,
2 |F(2) - g(2)| < |F (2) - 1(z)]

throughout E, then let h(z) =f(z) — g(z). If, for zo€E, f(z,) = F(z,) then
g(zo) = F(z,), hence h(zo) =0 which implies (1) for z,. If f(zo) # F(zo),
then

[F(e0) feo) iz = Fzo)—2ftz0)+ £(z0)] = Fao)~ e} |2

2 |F(zo) - f(20)] (2 - %z—gt%l

F(Zo)"g(zo)) ‘
F(zo)—f(20)

) > 1Feo) = 10| > | Flzo) - 86ao)
IF(Zo) f(Zo)+h(zo)|

thus (1) holds for every z€ E.

Conversely, (1) (with A=1)implies that when F(z,) #(z,), Re (T#)F(—z)) >0
- 0
Let 0
h(z)

a = sup “ G —Fo 2/;)_Re(},—(Z)—L(?—f,—(-z—));zeE,f(z)aaé}?(z)},

and put g(z) =/(2) - 1o

F(z,) = f(z,), then h(zo) 0 hence g(z,) = F(z,), and again (2) is satisfied.

1
If A<1, let h(z) =
(2) T
and h(z)e B. Obviously,
| F(z0) — 8(z0)| < 4| F(z0) ~ f(z0)| < (1) holds for z,.

Note that Lemma 2 holds if 0 <4 <1 and we replace above *‘J,(4, E)’” with
““J,(4,E)”, and replace “Z? with “g”,

LemMA 3. Let f(z)eB, E,={z€eE; f(z) = F(z)}. For every E' € E — E,,
define the set R(E’) in the Euclidean space &*":

R(E") = {(,.l’sl,,.z,sb...,r,,,s,,); r; = [f(zg( )F( )] 5;= [sz)j:‘(Z—-)FG-)-]

15ighn, zeE'}.

, then inequality (2) easily follows. When, for z, € E,

(f(z) — g(2)) be the relation between g(z)eB

For any a=(ay,by,,a,,b)ee® let n(a,1)={xee®; (x,a)>0}, and for
O<pu<1i let
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n(a,) = {x= oy, puo o o ) €75 T Guut i) @ = b — 1| < ).

Given 0< A <1, f(z)eJ,(A,E) < for every a=(ay,b,, ,a,b,)ee? which
satisfies Xp-q(a,—ib)f(z) =0 on Ey,R(E — Ep) & n(a,A).

Proof. < : Suppose f(z)¢J,(4,E), by Lemma 2 there exists
h(z) = kzl (4 — iby) fi(2)

which satisfies (1) on E, let @ = (a4, by,+-,a,,b,). If A=1, (1) means: h(z) =0

on E,, and Re[ﬁ;)—lzéz)T—(z—)] >0 on E - E, that is R(E — E;) < n(a,1).
i = — h(z)

If A<1, (1) means: h(z)=0 on E,, and l J1 AZJ—’(—Z)—:?(—Z) ll < A

on E — E, that is R(E — Ey) = n(a’, 1) where @’ = /1 — A2 a.

=: This is proved similarly by working backwards.

THEOREM 2. Given 0<A=1 and f(z)e B, suppose E, = {¢y,cp,*,¢;} =
={zeE; f(z)=F(z)} where 05l<n. f(z)eJ(A,E) <> there is a set
Ep.i. SE—Ey,of m+1 points, n—1Sm=Z2n-1), such that

f(z)EJl()"’Enﬁl UEO)

Proof. <« :Obvious. = : Assuming to the contrary f(z) ¢ J (4, Esy_ 241 VEo)
for every E,,_j141=1{20,21,"**sZ2n-21} S E— Ey, there is by Lemma 3
a=(ay,b,, ,a,b)ee® such that Xi_ (a,—ib)fi(z)=0 on E, and
R(Ezp-2+1) S ™a,4). Let x;=(Refi(c)), Imfi(c), -, Refc), Imfy(c)),
y;=(mf(c;),—Refy(c), -, Imf,(c),— Ref,(c;),j=1,2,---,1, and for any b € £*"
let H(b)={x;(b,x)=0}. Since the vectors x,,y,, :*,x;,y, are linearly independent,
H=(\j=1H(x)nH(y) is 2n -2l dimensional. Let x(z)e R(E — Eo) be the
point associated with ze E — E,. By our assumption a e H[ 2% n(x(z,),4).
Using the well known Helly’s theorem on the intersection of convex sets in
g% (the sets m(x(z),4) are comvex), there exists a’=(a},b],--,a},b)
in H ﬂ, cE-EoT(x(2),4), that is x=1(a; —ibp)f(z2)=0 on E, and
R(E - E,) = n(a’,A), meaning by Lemma 3 f(z) ¢ J,(4,E) — a contradiction!
We proved the existence of E,,; with m<2 (n—1), clearly m =2 n —1, since
otherwise, by condition I', there exists g(z)e B equal to F(z) on E,,, VE,.

REMARKS. a;) Obviously if E, has n points at least, then f(z)eJ,(4,Ep)
where Eq( < E,) contains n or more points.

b,) A similar theorem holds for J,(4, E).

¢,) If F(2), f(2), fi(z) (1 S k < n) are real we obtain m = n — [ (since in the
proof R(E — E,) can be embedded in &"). This is also true for J,(4,E).
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6. The following theorem is established in [2] for the case fi(z) =z""*
(1=k=n)and E;= .

THEOREM 3. Suppose f(z)eB, Eg={c,,*,¢,} ={z€E; f(z)=F(z)} and
0li<n.

() f(2)€Jy(1,E)=>there exist — a set E,yq = {Zo,***,2n} S E — Ey where
n—ls=m=<2n-1), constants ,>0(0=<i<m)and w; (1<j=<1), such that

m e 1
3 Eo Aifulz) (F(z)) — f(2) +,§1 wifie;) = 0

Jor every 1S k=<n.
(ii) If (3) holds for some such E, ., 4;, w;, then f(z)eJ,(1,E,+; VE,).

Proof. We retain the notations of Theorem 2. (i) By Theorem 2,
feJ(1,E, . VE,) for some such E,,,. By Lemma 3, aeH =>R(E,;,)
& n(a,1), that is CR(E,+,) N H(a) # &, meaning CR(E,, ) NH* # & (where
CR(E,,+,) denotes the convex hull of R(E,,,), and H* the space orthogonal
to H). Therefore there exist comstants z; =0 Xi-,u,=1, real constants
a;,B; (1 <j <D such that X7 o px(z) = 2’,=1ajx_,- + B;y;. Putting w; =a;~if;,
A= ;1,| f(z)— F(z,)l ~2, we obtain (3). At least n — I constants A, are positive,
since (3) with m <n—1 gives (due to condition I') 4,=0 and w; =0 which
contradicts X7Lo4;> 0.

(i) Conversely, (3) means CR(E, ;)N H" # ¢, that is

acH = R(Em+1) $ n(a,l),

and by Lemma 3 f(z)eJ, (1,E,+1 YV Ey).

REMARK. Theorem 3 with fi(z) =2z""%, F(z) =z" and E,= & supplies us
with the structure of an infrapolynomial [1]: let p(z) = z"+ a,z" '+ .- + @, #0
on E. p(z) is an infrapolynomial on E<> there exists E, 41 = {Z,21,**,Zm} S E
with n<m<2n for which p(z) is an infrapolynomial <> there exist
4>0i=0,1,--,m Ziod=1 such that X7 o4 [[%=0,je1 (z—z;) is di-
visible by p(z).

7. We shall find in this section the structure of f(z)eJi(1,E) when
F(2),fi(2),f(2) are real and A< 1.

Given 0 <A <1, an integer n, and a set E, denote by Iy(4,n, E) [I,(A,n,E)]
the set of all polynomials p(z) = z" 4+ a,z" "' + -+ + a, with the property — for
no polynomial g(z) = z"+ -+ the inequality |4(z)| < 4| p(2)|[| a(2)| £ 4| p(2)|]
holds throughout E. Let I3(A,n,E) =I1,(4,n,E) — I,(A,n,E).

REMARKS. a,) It is shown in [3] that when E is compact I3(1,n,E)=f
(compare with Lemma 1), also by similar methods to Theorem 1
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Iz(l,n,E)U,1<1I 3(4,n,E) consists of every polynomial of the form
2"+ a2t + .-+ + a, (for finite E).

1(2)

Z_ZO

b,) Givenzy€eE, t(z)e (A, n,E)and (zy)=0< e(A,n—1,E—{z,}).

c,) Presently we shall need the following result (see [4]): If F(z),
fi(z) 1£k<n) are defined on E={z4,2,,2,}, and if condition T
holds and F(z) ¢ B, let f(z) € B be the function for which F(z)—f®(z) vanishes
on E—{z;}, i=0,1,---,n. Given any f(z) € B there is a polynomial p(z) = z"+ ---
(or alternately, given any p(z) =z"+ - there is f(z)e B) such that

@ p(z) /Ii[o(zi -z)= (F(z) = f(z)) | (F(z) —f“)(zi))a 0<isn.

J#t

d,) When f(2) and p(z) are related by (4) on such a set E,

f(2)e J(AE) <> p(z)eI(4,n,E).
Il(l,n,E)= {Z }‘i 1—[ (Z_Zj); ).,20, 2 Ai= 1}
i=0  j=0 i=o0
J#i
so it follows from (4) that

Ji(1,E) = {f(2) € B; &= (F(z)) — fz)/(F(z)) - fO(2)),4, 2 0, ‘io A= 1}.

e;) When F(z),fi(z) (1 £k=n) are real over E = {z4,2,,--,2,} (mZn),
clearly J;(1, E) consists of real functions only. By ¢, f(z)eJ,(1,E,, ) for some
E,i1={20,"*»2,} S E, and d, yields a simpler representation than that in
Theorem 3.

From now on we limit ourselves to the real case only, that is, E is a finite
point set in the real line, F(x), fi(x) (1 £ k £ n) are real on E and we restrict B
to real functions only. This is necessary as the following results appear to have
no simple equivalent generalizations for the complex case,

TaeoreM 4. Let F(x)¢ B, and suppose f(x) € B is equal to F(x) on n points
at most. For any E .1 = {Xg, %y, %,} S E, let

. F(x) = f(x) l ]_l

M) = |

i=0

F(x;) — f(x)

where fO(x) is defined for E, ., as in c, (define ME,.,) =0 if F(x;) = f¥(x,)
for some (i’). Let 2’ =sup{A(E,.);E,,, S E}, then 0< A’ <1 and
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(i) A'=1< f(x)eJ,(1,E),
(i) A'<1 < f(x)eJs(',E).

Proof. Assume A’ > 1 and suppose 4’ = A(E, ;) where E, , ; = {xg, X}, ,x’}
F(x)# X7 j 1a;f{(x) on E,,,, since otherwise l(E +1)=0. Let p(x)=x"+
box"" + - + b, berelated to f(x) by (4) for the set E, ;. Let o(x) = [[}ao(x — x})
then

p(x) )| _ FOo)—fG) | _ 1
©) Eo o'(x) = Es:o o’ x') im0 | FG)—fO(x) |~ MEpsy

which contradicts A(E,.,)>1. A'>0, since A’ =0= F(x)e B!

(i) =:Let ’=AE,;;)=1, using (4) and (5) we have p(x})/w'(x}))Z0,
and from d, f(x)eJ,(1,E,; ;) < J(1,E).

(i) <: By c, there exists E,,, such that f(x)eJ, (1, E,,,), using (4) and d,,
(5) follows with equality everywhere, giving A(E; ;) =1.

(ii) =:Suppose i’ = A( v+1) and f(x) ¢ J (4, E, ), then there exists g(x)e B
such that | g(x}) — F(x})| S VD —-F()| i=0,1,--,n. Let (4) relate
r(x)= x"+ .-+ and g(x) for E,,,, then

"(xi)

“0'(x2)

_y ) ¥
1= E-:o o'(xp) ~ Eo
z" F(x}) — g(x3) Fx)) = f(x1)
i=o | F(xp)—fO(x) F(xy) — fO(xp)

this contradiction implies f(x)eJ(A,E/.,) € J,(A', E).

For any E,.; ={Xg,"*s%,}, f(x)¢J2(A(Eps1),Ens1). This is obvious if
ME,+1) =0.If A(E,+;) >0, let (4) relate p(x) = x"+ --- and f(x) on E, , 1, define

| < (B0 X

i=0

=1,

r(x) = f: (Ensr) | 20D, x“’f‘)x , where (x) = [] (x—x)
i=0 i i=0

w,(xi)

then | r(xy) | =ME,+1) l P(xi)l , meaning f(x) ¢ Jo(ME,+1), Eps 1) (2 J2(A, Eqsy))-
Let

C(x) = {(al, ""an) € 8";

T af) - F) | S 2| - F),

we have ﬂ C(x;) # & for every E,,, < E, and by Helly’s theorem (the sets
i=0
((x) are convex) ﬂ,e gC(x) # &, so f(x) ¢ J,(4', E). Therefore f(x) e J3(A',E).
(i) <: J(1,E)=J,(1,E), therefore A’ <1.

COROLLARY 1. Suppose f(x)=F(x) only on E, = {xq,%;,+**,X;_} where
0<k<n,let0<i<l.
() f(x)eJs(A,E)=>there exist: E,.;=FE;U{XXps1,:5X,}, constants
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#;,8;20 (j=k,k+1,--,n) with Xj_,a;= Xj_ ;=1 and «;8;=0 such
that

© 1)~ Py = I L= g0 - Ry (ks <.

(i) If (6) is satisfied for such E, ., «;, B; then f(x)€J3(A,E,y).
Proof. (i) The existence of such E,,, for which f(x)eJ;(4,E,,) is assured
by c,, and by Theorem 4: 1 = [ 3 | Je =) ] ]_.1 Define
i=o | F(x;) — f0)(x;)
22 [ F(xj) — f(xp)

=177l F ) =7 9(x,) ] when this ratio is positive, and when it is negative

2 F(x;) = f(x;
define B; = =3 [F()(cj)J)—fj(;())(c;c)j)] (take o;=0 [B;=0] when B;#0

*[a; # 0]), representation (6) then follows.
(ii) Calculating A(E,,;) of Theorem 4 from (6) we have (E,,,)=4<1,
the rest follows from Theorem 4(ii).

%

8. We aim to prove here a supplement to Corollary 1:

COROLLARY 2. With the assumptions of Corollary 1,
(i) f(x)eJy(4,E) = there exist: E,.;=E, U{x;,Xp41,"*sX,}, constants
Lj>0 (kZi#j<n) Zi;=1 such that

M fGx)—F(xp)=

iEk (1 + }w)iuz_l(l — ll)lji (f(i)(xj) _ F(xl)) (k <j<n)

i)
(ii) If (7) is satisfied for such E,,y,%;, then f(xX)eJ,(A, E,4,).

The proof of Corollary 2 depends on the following two lemmas of which the
first is obvious:

LemMa 4. If C < &"isa compact convex set, let n(a, 1) = {x e ¢"; | (x,a)— 1| <1}
where 0 <1 <1 and ace”. C <& n(a,2) for every ace" <> the orthogonal pro-
jection of C on any line l through O is a closed interval [(x(l),y()] with the pro-

diy(),0) 1+ 4 '
d(x(1),0) 1= ) (d denotes the Euclidean

perty: either O e[x(l),y(D)] or
metric function).

LeMMA 5. Let A={xy,x{, ,x,} S¢" be an affine independent set. For
A+ Dx; — (1 = A, .

0< <1 and n(a,1) as above, define x;; = ¥ (0=Zi#j<n),

let F={x;;0<i+#j<n}and C(F) its convex hull. Then, OcintC(F) <

A & n(a,’) for every ace”.
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Proof. For any G = ¢" denote by C(G) its convex hull,

STATEMENT a: Let F’ = {x,;;;0 £ i #j < n}, the relative interior of C(F’) is
contained in int C(F). This is due to x,, and x,, being strictly separated by 7 —
the plane containing F’ — whence relint C(F’) < int C(F’ U {x,0,%0,}) < int C(F).
Moreover A < int C(F).

STATEMENT b: Let =,,7, be parallel distinct planes supporting C(4) at x,x;
respectively. Let n; support C(F) so that x; separates n; and 7, then x;;en;.
This is easily verified for n < 3. Suppose n > 3, let x;;€ C(F)n n; and assume
that A’ = {xg,xy, -, X,_ 1} contains x;, x;, x;, x;, let the plane 7 contain 4’, and
let F'={x;;0Zi#j<n}, n/=mnNn r=1,2,3. Reducing the problem to
the (n — 1) dimensional ‘‘space’” z, the proof is carried out by induction.

STATEMENT ¢: With the notations of statement b,

d(ms,my) _ dlxpx) 144
d(ns3,my) N d(xijaxj) T1-A

<«<: Assume O ¢intC(F). Take =, (r=1,2,3) as in statement b so that 7,
separates O from C(F) and C(F) N 75 is an n — 1 dimensional face of C(F). Pass
a line I orthogonal to m; through O, let In#, =x, (r =1,2,3), then [x{,x}]
is the orthogonal projection of C(A) on I, and by statement ¢

dng,my) _ 1+ 4 _ iy o d0,x))
dmymy) 1= dxxy) = dO.x)

which contradicts Lemma 4.
=: Let ! be any line through O, let #n, (r = 1,2,3) be as in statement b and
orthogonal to I, let x,=Inm=n, (r=1,2,3) and suppose Oe(x},x3), then

d0,x3) _ d(xx) 14 ,
b =TT d d to L 4’
20w ~ Awyxpy O =T nd according to Lemma

ace = n(a,A) 2 C(4).
Proof of Corollary 2. (ii)

1 - 2": F(x;) = f(x) -
ME,+1) =0 | F(x) —fO(x))

NI 21 Vil L T R R CETY PR RS V.

i=k i=k 22 -1

#J

j=k ' i=k 2
iEj
Theorem 4 gives f(x) € J((AEp+ 1), En+1) € J2(4, Epsq)-

(i) By Remark ¢, f(x)€J;(4,E,;,) for a suitable E,,; 2 E;. Let (4) relate
p()= x"+ - and f(x) for E,+q, let p_y(x)=p x)/[[}-o(x —x)), by d,
and b2 pn—k(x)eIZ(A"n—k’ Eu+1_Ek)' Let xi=(pn—k(xi))_l(x?—k_la""xb 1) es"-k
i=kk+1,-,n, and let o= {X;,X;41,**,X,}. As in Lemma 3:
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Pa-i(*) €Ly(A,n — k,E oy — E)<> 0 & n(a,4) = {xe&""%;|(a,x) — 1| £ 1}

for every aee"*.

¢ is (n— k)-dimensional, for assume it is not so, then the linear hull of ¢, L(o
contains the origin; since otherwise the orthogonal projection of L(¢) on a
line through the origin and orthogonal to L(c) is a single point; and this by Lem-
ma 4, contradicts the result: ¢ ¢ n(a, 1) for every ace" *. Therefore, there
exist n — r (S n — k) points in o, Suppose X,;1,X,+2,"*» X,, and real constants
Q,41,8,42,",a, not all zero, such that X%_ ,,a;x,=0, but this equation has
only one solution a,,y =a,,., =+ =a,=0, which is a contradiction.

Hence by Lemma 5 OeintC(F) (we substitute ¢ for 4 and & for &
in the lemma), so if 2Ax;=(1+A)x;—(1—Dx; (k<i#j=<n) then there
are 4;; as above for which X A;;x;; = O; consideration of the coordinates and
use of the Lagrange interpolation polynomial gives

z g —(1=A)4; r
Pn—k(x) = 'gk (t"‘k ( +l)}'if2)l( ) Ji) ]:[k (x - xi),
- i;j ;;J

(7) follows immediately.
9. For every f(x)= Xi-1a;,f(x)eB we associate here the point
(a,,a,,++,a8,)ee", then

THEOREM 5. Under the preliminary conditions of Theorem 4, J,(4,E) is
compact and connected.

Proof. By c¢; J,(4,E)=UJ(4LE,, ), it is sufficient therefore to establish
compactness of J;(4,E,,,): E,,, = {Xo,",X,} - According to Theorem 4,

En F(x;) — f(x))
i=o | F(x)—fO(x)

and compactness is now obvious.
Let f(x)eJ;(4,E,+,) and consider the nontrivial case: F(x)z Zh=1 % fi(%)
on E,iy. Let g,(x) =af(x) + (1 —a)fV(x) (0L a<1), then

1
= I e f(x)ejl('laEn+l)s

y | FoD—eln) | oy w | Fe) = f(x) “_1
E | Fey—rogy | 217 T B | g —fomy | £172775;

that is g,(x)eJ{(4,E,+q).

We finish by showing that J,(1,E) is connected. Let g,(x), g (x)eJ 1(1LE),
there are E{); = {x§, -, x"} (i=1,2) such that g(x)eJ,(1,E%,). Suppose
now E&)\ N EP, = {x},x5,-,x,}, let g(x)eB be the function for which
F(x) — g(x) vanishes on E{Y; N EZ),, then g(x)eJ(1,ED,) (i=1,2), and
since J,(1,E{"],) is convex (deduced from d,), the proof is established for this
case. In general, construct sets E{y=F,,F,, -, F, = E, suchthat F;(1 <i<r)
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has n + 1 points exactly, and F; N\ F;,, has n points exactly, we may now connect
£:(%), g,(x) through the intermediate sets F,.

REMARKS.  Also it may be verified that J,(4, E) (0 < 4 < 1) is open, connected,
and its closure is J;(4, E).

In {3] it is shown that I(1,n,E) is convex if and onlyif n=0orn=1o0r E
has n + 1 points. This is not true in the general case as shown by the following
counter example:

E ={x,%3,%3,Xs} (X141 > %), F(xy) = F(x;) = F(x3) =0 and F(x,,)=1,
and f,(x) =x, f,(x) =1. We obtain from Remark d,:

4
Ji(L,E) = ‘szl JI(LE-{x})=J,(1,E-{x;})

which is convex.
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